REPLACEMENT OF BRIDGE NO. 04575
MAIN STREET OVER
TANKERHOOSEN RIVER
VERNON, CONNECTICUT

STATE PROJECT NO. 146-199

ADDENDUM TO PRELIMINARY ENGINEERING REPORT

DECEMBER 22, 2016

Prepared By: Dewberry Engineers Inc. 59 Elm Street, Suite 101 New Haven, CT

Table of Contents

De	<u>escription</u>	<u>Page</u>
	Foreword	1
1.	Project Description	1
2.	Geometric Details	1
3.	Traffic Control	1
4.	Substructure and Superstructure Evaluation	1
5.	Hydrology, Hydraulic and Scour Evaluations	3
6.	Preliminary Foundation Report	4
7.	Alternate Transportation Modes	4
8.	Rights of Way	4
9.	Noise/Air Impacts and Design Features	4
10.	Drainage and Permitting	4
11.	Utilities	4
12.	Landscaping	4
13.	Summary of Findings	5
14.	Recommendation	5
	pendix B – Design Elements Table pendix C – Roadway Typical Section, Plan and Profile	

Appendix D – Cost Estimate

Appendix F – Bridge Alternative General-Plan, Elevation and Cross-Section

Appendix I – Preliminary Structural Calculations

Addendum to Preliminary Engineering Report

FOREWORD

Various technical investigations were conducted during the preliminary engineering phase of this project for the replacement of the Main Street Bridge No. 04575 over the Tankerhoosen River. Subsequent to the submission of the Preliminary Engineering Report and based on a discussion between Dewberry Engineers and Close Jensen and Miller (the Consultant Liaison), one additional alternative has been investigated that should be given consideration as a potential preferred alternative. This Addendum provides specific information regarding the newly developed alternative:

1. PROJECT DESCRIPTION

No Change.

2. GEOMETRIC DETAILS

Geometric details for the new alternative remains the same as included in the Preliminary Engineering Report.

The new Alternative 4 replaces the existing bridge in the same location and alignment as the existing bridge, the geometrics will follow the existing centerline of the road. The roadway profile will be raised by approximately 1 foot to provide for the increased structural depth and additional free board between the new bridge low chord and water surface similar to Alternative 1 and 2 presented in the Preliminary Engineering Report.

3. TRAFFIC CONTROL

Traffic control will follow Option 3 that is discussed in the Preliminary Design Report for the new alternatives.

4. SUBSTRUCTURE AND SUPERSTRUCTURE EVALUATION

Evaluated Alternatives and Bridge Evaluation Methodology is consistent with the discussion presented in the Preliminary Design Report.

Proposed Bridge Replacement

Replacement Alternative 4: One Lane Bridge (On Line)

This alternative proposes the replacement of the existing bridge with a one-lane steel multibeam bridge constructed above the refurbished historic truss on the existing alignment to carry vehicular and pedestrian traffic.

New, cast-in-place concrete abutments would be constructed behind the existing bridge abutments, therefore maintaining the existing 55.5 ft. wide clear channel opening. The proposed abutment location would require a 71'-9" span bridge (69'-9" between centers of bearings) and would carry one (1) 11'-0" wide travel lane and a 4'-0" wide striped path at grade along the east side. The proposed 11'-0" wide roadway would follow the proposed approach width. The proposed abutments would be constructed as integral abutments on micropiles or drilled in H-Piles rock socketed in gneissic bedrock with a 225 kip factored axial resistance.

The existing historic truss system would be rehabilitated and utilized in its original form without providing any support for traffic or structural load from the superstructure other than its own self-weight. The truss system would be supported on the existing stone walls which would be repaired as needed. The new proposed superstructure would be placed between the trusses and supported by the proposed abutments built behind the existing stone wall abutments. Since there is no pedestrian access on the cantilevered section of the truss floor beams in this alternate, the proposed abutments would be constructed the length of the roadway section only.

A total of four (4) W30x132 rolled beams would support the reinforced concrete deck. The steel beams were designed utilizing Bentley Leap Bridge Steel structural analysis program for the dead loads due to its self-weight and weight of the proposed concrete deck, railing and wearing surface and live loads due to an AASHTO HL-93 design vehicle. A yield stress of 50 ksi was assumed in the analysis based on AASHTO M270 Grade 50 steel typically specified for structural steel. In order to avoid future maintenance associated with painted steel, galvanized steel would be utilized with an option to galvanize and paint the fascia beams.

A standard 8½" thick reinforced concrete deck made composite with the steel beams would be utilized to support the roadway. The 4'-0" wide pedestrian path at grade would be striped between the edge of travel lane and the edge of curb on the east side of the bridge. In order to maintain the existing overtopping conditions, an open rail would be used. A 9" high 1'-10" wide concrete base would support the rail. The low cord elevation for this alternate matches the existing low chord of 207.7 and is located at the east side of the south abutment. Wingwalls would be required to contain the embankments utilizing the existing low rubble stone retaining walls that would be preserved and are extending from the existing stone abutments.

Due to the existence of a previous sidewalk on the cantilevered floor beam section of the existing truss bridge, this study also investigated an additional alternative with a new independent pedestrian bridge constructed above the cantilevered section of the refurbished

truss floor beam. However, this alternate was not progressed when it was discovered that the abutment length needed to accommodate the AASHTO and ADA required 5'-0" sidewalk width would encroach into the river. This would require extensive modification to the existing stone walls and the embankment would need to be widened into the river. Therefore, due to hydraulic and permitting issues, a new pedestrian bridge constructed above the cantilevered section of the refurbished truss floor beam was eliminated.

A General-Plan, Elevation and Cross-Section of the proposed bridge configuration is depicted in sketch SK-5 (Appendix F).

The following describes the proposed sequence to accomplish the construction:

- Temporarily shield/relocate aerial utilities and protect/support utilities attached to or near existing structure
- Detour traffic and close the bridge to vehicular and pedestrian traffic
- Install debris shield under the bridge and remove existing bridge superstructure
- Remove existing truss system
- Repair, rehabilitate and repaint truss system including floor beams
- Construct proposed abutments on micropiles or drilled in H-Piles
- Repair existing stone wall abutments
- Reset the rehabilitated truss system on the repaired stone wall abutments
- Erect steel beams on proposed abutment caps
- Construct the continuity diaphragm
- Construct concrete bridge deck and approach slabs
- Place waterproofing membrane and bituminous concrete wearing surface on bridge deck and approach slabs
- Construct rail base and open rail system and stripe pedestrian path at grade
- Complete approach roadway work
- Remove all barriers and open bridge to vehicular and pedestrian traffic

It is anticipated that the proposed construction can be accomplished in one construction season (9 months). The proposed replacement (Year 2017 pricing) is estimated at \$1,950,000 in the construction cost estimate (see Appendix D).

5. HYDROLOGY, HYDRAULIC AND SCOUR EVALUATIONS

Alternative 4 is the reconstruction of the bridge at its existing location with an 11' lane and a 4' shoulder. Because the existing trusses are retained, along with the transverse floor beams, the proposed low chords in this alternative must match the existing low chords. Since low chords match the existing, and the abutments are kept at the same location, this option is essentially the existing condition. The only change from the existing condition is a slight increase of the vertical profile, which would not have an impact on the model, since none of the design flows overtop the roadway. Therefore, a hydraulic analysis of this alternative is not necessary. The proposed water surface elevations for this alternative are the same as the

existing. For a summary of water surface elevations, refer to the Existing Condition columns of data on tables 3 through 8 and tables 24 and 25 of the preliminary hydraulic findings memorandum dated December 15, 2016. Scour for Alternative 4 is anticipated to be very similar to the existing condition. Given the relatively shallow depth of bedrock along with the control provided by the downstream dam, scour is not expected to be an issue.

6. PRELIMINARY FOUNDATION REPORT

The Preliminary Foundation Report Memorandum has been revised to include the new alternative and is being submitted concurrently with this Addendum. The following narrative is a summary of aforementioned report specific to the new alternative only. Please refer to the Preliminary Foundation Report Memorandum and Preliminary Engineering Report for further information.

Based on the results of the subsurface investigation, deep foundations such as micropiles or drilled in H-piles socketed into bedrock, will be utilized for Alternative No. 4. It is anticipated that nominal axial pile resistance in excess of 125 tons is feasible.

7. <u>ALTERNATE TRANSPORTATION MODES</u>

No Change.

8. RIGHTS OF WAY

See Preliminary Engineering Report discussions for Alternative 1 as impacts will be the same for the new Alternative 4.

9. NOISE/AIR IMPACTS AND DESIGN FEATURES

No change.

10. DRAINAGE AND PERMITTING

No change.

11. UTILITIES

No change.

12. LANDSCAPING

No change.

13. <u>SUMMARY OF FINDINGS</u>

For Alternative 4, traffic control Option 3 discussed in the Preliminary Engineering Report for maintaining traffic during construction utilizing a temporary driveway access from Route 83 through one of the existing properties to the Main Street cul-de-sac is recommended to be progressed to final design. Temporary easements for the temporary driveway will be required from one property owner and the State of Connecticut for encroachment into the I-84 existing ROW. Therefore the replacement bridge for Alternative 4 can be constructed in the same location as the existing resulting in no permanent ROW acquisition.

The Steel Multi-Beam Bridge construction cost estimate for Alternative 4 has been prepared only utilizing Traffic Control Option 3 and is summarized below and attached in *Appendix D*.

Alternative 4: One 11' lane, 4' shoulder/pedestrian/bike path

Construction Cost: \$1,950,000 Construction Duration: 9 months

Hydraulic performance for Alternative 4 is essentially the same as the existing condition; therefore, there will be no increases in water surface elevations for the 2, 10, 25, 50, 100 and 500 year events.

For Alternative 4, the drawings HWY-09 (*Appendix C*) depict the roadway plans. The proposed typical section is depicted on drawing HWY-08 in *Appendix C*. The profile for the proposed alignment can be found on drawing HWY-10 in *Appendix C*.

There is no existing sidewalk located along the bridge or roadway on Main Street, and no sidewalk will be proposed at this time on the roadway, however a pedestrian path will be provided across the waterway.

A comparison of existing and proposed roadway design elements with the current Design Standards specified in the CTDOT HDM is tabulated for Alternative 4 in the Design Elements Table in *Appendix B*.

14. RECOMMENDATION

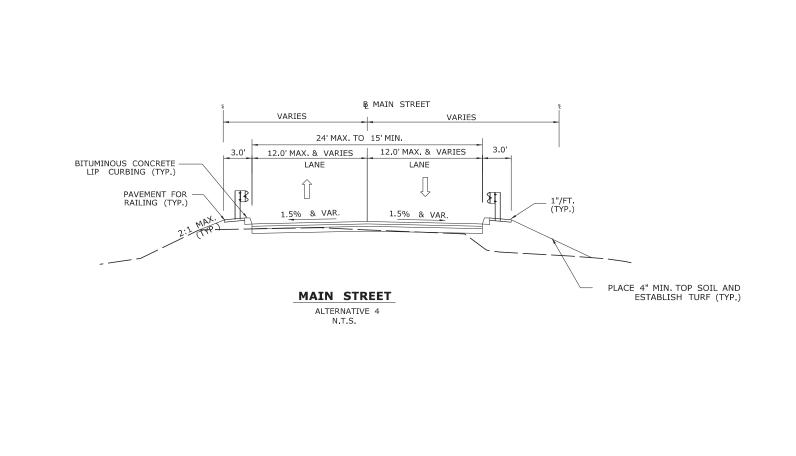
Alternative No. 4 provides a new bridge that is independent of the existing historic truss superstructure and retaining/channel walls. The new bridge will meet current design requirements and given the low volume of traffic that crosses the river the single lane bridge will adequately service the residents, emergency services and park users. The alternative also rehabilitates the existing truss superstructure and stone walls. We believe that this alternative strikes an appropriate balance between maintaining the historic nature of the original truss bridge and retaining walls in their original configuration while providing a modern, code compliant structure. As this alternative is also the least costly alternative, we recommend that Alternative No. 4 be advanced to final design.

Appendix B

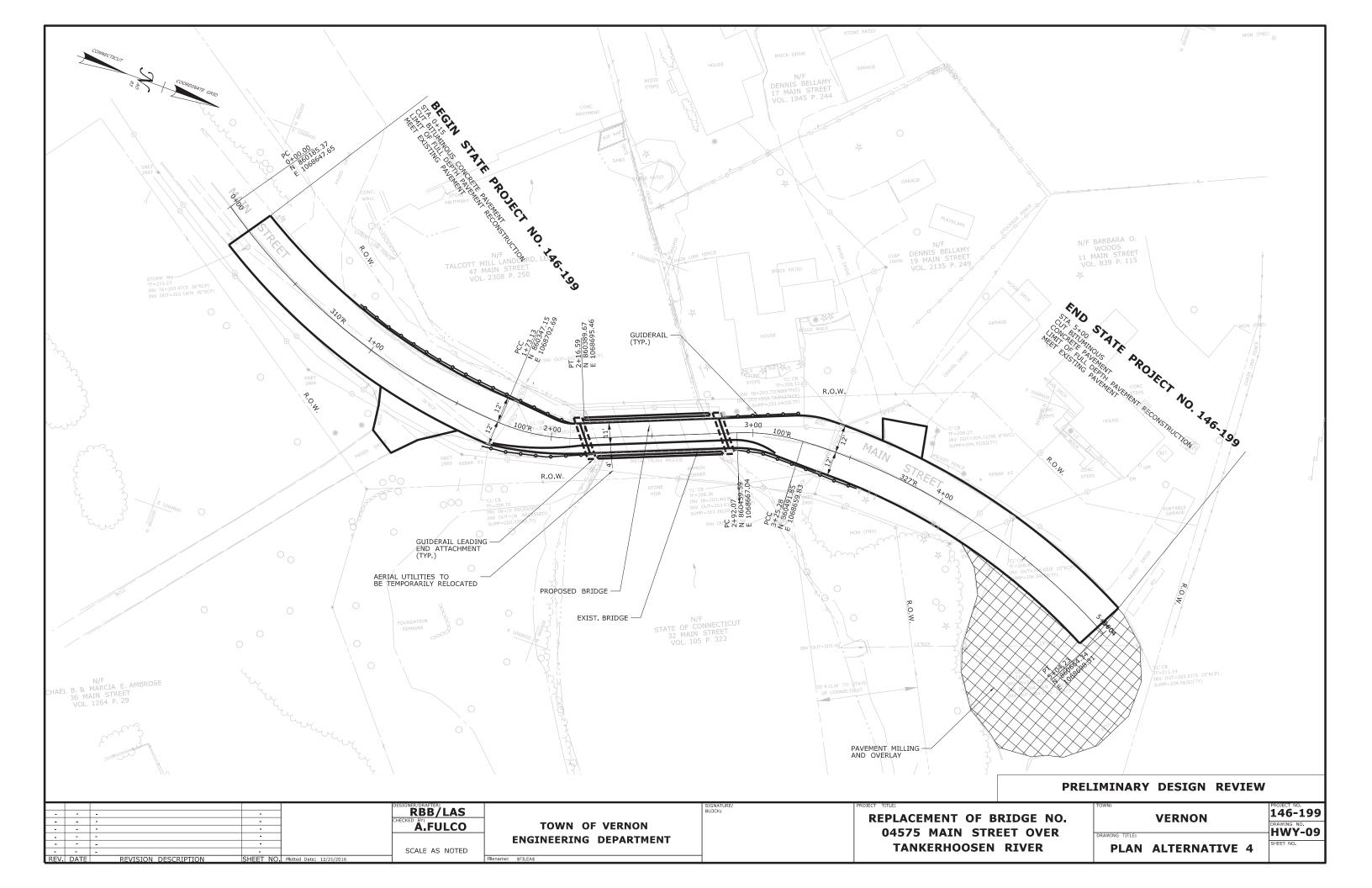
Design Elements Table

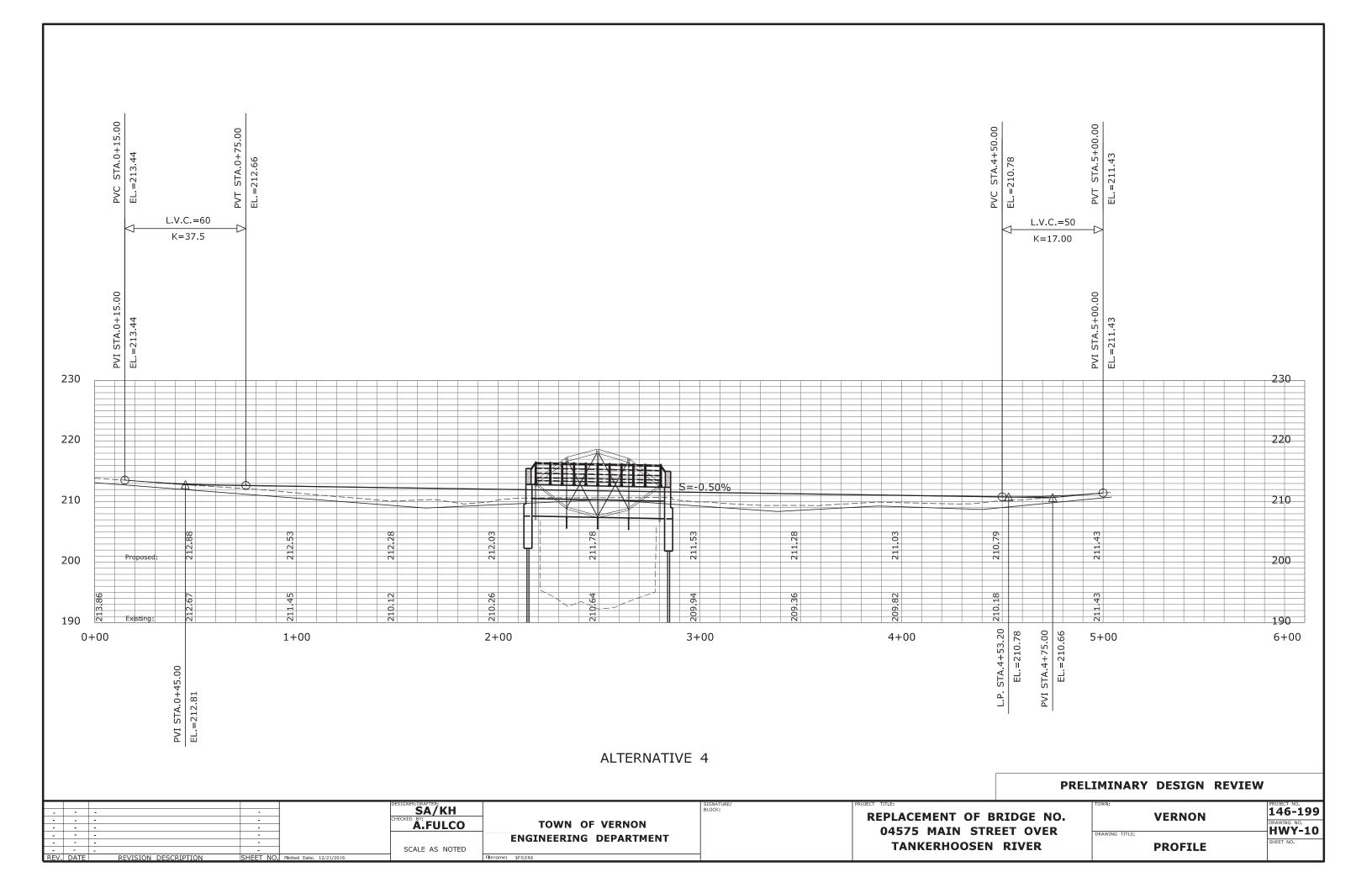
Appendix B: Design Elements Table

Design Element:	Design Standards	Existing	Proposed Alternative 4 Design
Design Speed	30 mph	30 mph	30 mph
Travel Lane Width Approach Road Bridge	12 ft.	10.0 -12.0 ft. 15.0 ft.	11 ft. 12 ft. (1 Lane Bridge)
Shoulder Width	2-4 ft.	0 ft.	4 ft.
Cross Slope Travel Lane Shoulder Roadside Clear Zone Minimum Radius of curvature Maximum Grade	1.5-2.0% 1.5-2.0% 14 ft. 230 ft.	Varies N/A 14 ft. 100 ft. 2.1%	1.5% N/A 14 ft. 100 ft.* 2.1%
	0.5%	0.2%	0.5%
Minimum Grade			
Vertical Curvature (K value) Crest (min.) Sag (min.)	19 37	15 26	N/A 17**
	200 ft.	<155ft	<155ft.
Stopping Sight Distance (Vertical)	200 ft.	100 ft.	100 ft.*
Stopping Sight Distance (Horizontal)			


^{*} Design exception will be sought for this criteria on the basis that this is a bridge replacement project and major roadway work is not feasible.

^{**} Design exception will not be sought for this criteria as is occurs at the end of the Cul-de-sac where proposed profile is meeting existing ground and speed of vehicle will be extremely slow.


Appendix C


Roadway Typical Section, Plan and Profile

 DESIGNER/DRAFTER: RBB/LAS	SIGNATURE/ BLOCK:	REPLACEMENT OF BRIDGE NO.	VERNON 1	ROJECT NO. L46-199
 A.FULCO	TOWN OF VERNON	04575 MAIN STREET OVER	VERNON	RAWING NO.
	ENGINEERING DEPARTMENT	04575 MAIN SIREEL OVER		
 SCALE AS NOTED		TANKERHOOSEN RIVER	TYPICAL SECTIONS	HEET NO.

PRELIMINARY DESIGN REVIEW

Appendix D

Cost Estimate

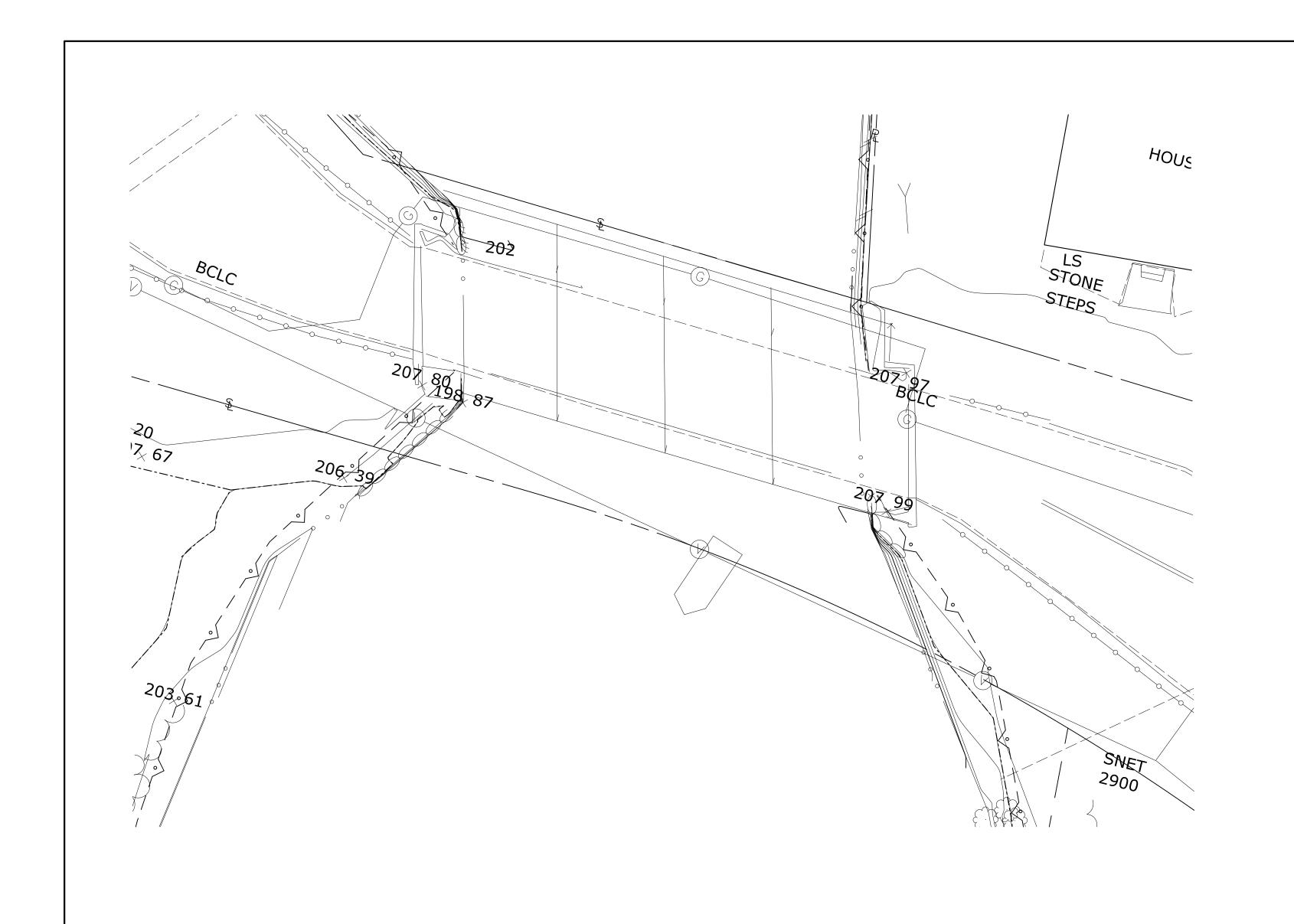
PRELIMINARY ENGINEERING ESTIMATE

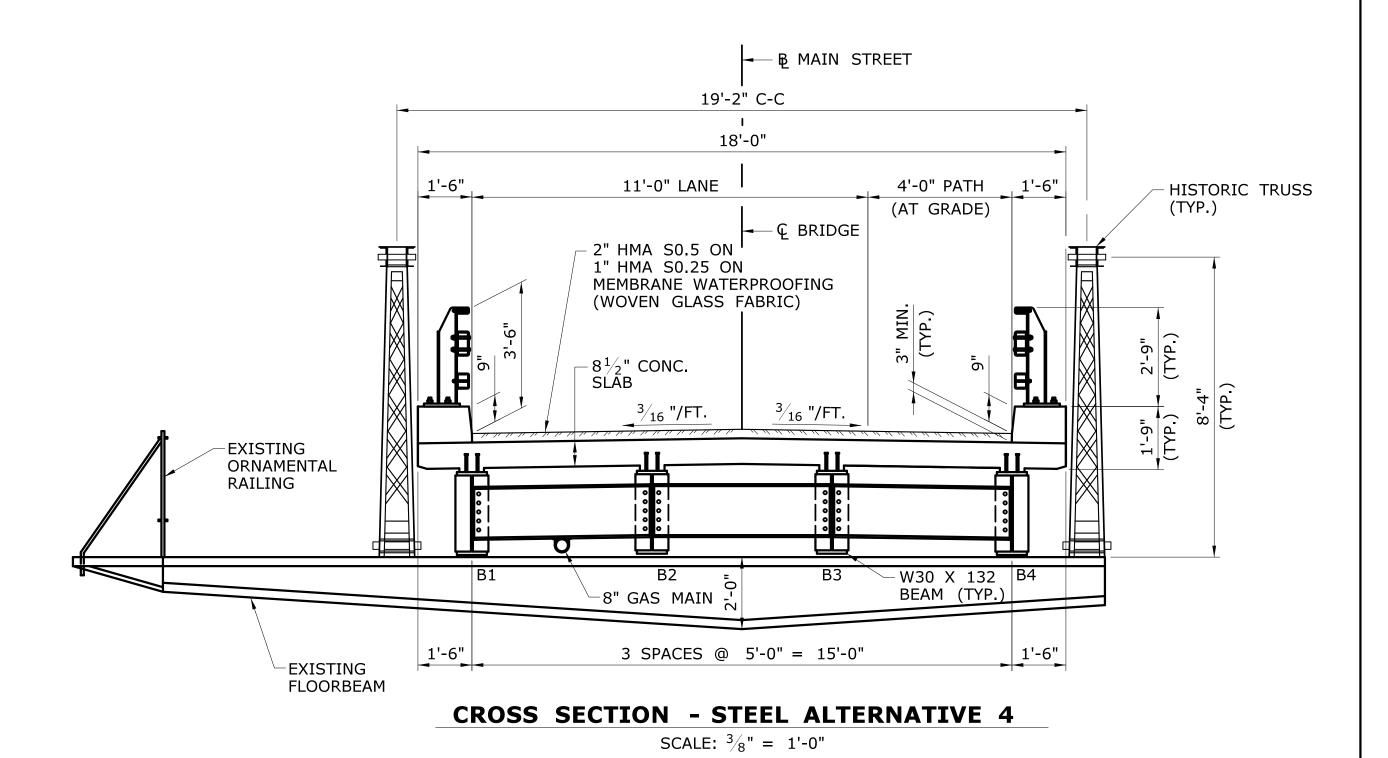
Replacement of Bridge No. 04575 Main Street over Tankerhoosen River Vernon, Connecticut

State Project No. 146-199

Alternative 4: 15' Wide Steel Multi-Beam Bridge with Pedestrian Path, Existing Alignment

ITEM	QUANTITY	UNIT	UNIT PRICE	AMOUNT
A. Roadway Items				
Earth Excavation	195	CY	\$22.00	\$4,290
Cut Bituminous Concrete Pavement	175	LF	\$6.00	\$1,050
Borrow	150	CY	\$17.50	\$2,625
Formation of Subgrade	1,150	SY	\$5.00	\$5,750
Sedimentation Control System	775	LF	\$8.00	\$6,200
Milling	700	SY	\$8.00	\$5,600
Processed Aggregate Base	280	CY	\$45.00	\$12,600
HMA S0.5 HMA S0.375	140	TON	\$160.00	\$22,400
Material for Tack Coat	225 210	TON GAL.	\$140.00 \$25.00	\$31,500 \$5,250
Metal Beam Rail (Type R-B 350)	295	LF	\$25.00	\$7,375
R-B 350 Bridge Attachment - Vertical Shaped Parapet	4	EA	\$2,600.00	\$10,400
R-B End Anchorage - Type II	4	EA	\$1,250.00	\$5,000
Furnishing and Placing Top Soil	850	SY	\$7.25	\$6,163
Turf Establishment	850	SY	\$3.00	\$2,550
Pavement Markings	1,050	LF	\$6.00	\$6,300
Construction Field Office, Small	10	MO	\$2,500.00	\$25,000
Bituminous Concrete Driveway	125	SY	\$40.00	\$5,000
			Sub Total	\$165,053
B. Structure Items				
Structure Excavation - Earth	68	CY	\$20.00	\$1,360
Removal of Existing Superstructure	1,104	SF	\$70.00	\$77,280
Structural Steel	43,700	LBS	\$5.00	\$218,500
Galvanize Structural Steel	43,700	LBS	\$0.60	\$26,220
Class F Concrete (Superstructure)	76	CY	\$1,150.00	\$87,400
Class A Concrete (Substructure)	23	CY	\$800.00	\$18,400
Deformed Steel Bars (Epoxy Coated)	15,200	LBS	\$1.65	\$25,080
Deformed Steel Bars	3,100	LBS	\$1.40	\$4,340
Steel Laminated Elastomeric Bearings Pervious Structure Backfill	8 17	EA. CY	\$800.00 \$56.00	\$6,400 \$952
Micropiles at 225k Factored Resistance	220	LF	\$180.00	\$39,600
Membrane Waterproofing (Woven Glass Fabric)	137	SY	\$115.00	\$15,755
HMA Wearing Surface	28	TON	\$210.00	\$5,880
Open Bridge Rail (Pedestrian Rail)	132	LF	\$320.00	\$42,304
Remove, Clean, Repair, Coat, Store & Reinstall Hist. Trusses & Floorbeams	1	LS	\$275,000.00	\$275,000
Repair (Repointing) Existing Stone Masonry Walls	1,080	SF	\$50.00	\$54,000
Asphaltic Plug Expansion Joints	36	LF	\$110.00	\$3,960
			Sub Total	\$902,431
C. Environmental Compliance Items				
Estimated Cost		EST	\$40,000.00	\$40,000
D. Traffic Items	40	· · ·	610000	04.000
Traffic Person (Municipal Police Officer)	40	HR	\$100.00	\$4,000
Construction Signing Temporary Access Driveway	250 1	SF LS	\$12.00 \$25,000.00	\$3,000 \$25,000
Temporary Access Driveway Temporary Precast Concrete Barrier Curb	100	LS	\$25,000.00 \$56.00	\$25,000 \$5,600
Construction Barricade - Type III	4	EA	\$140.00	\$5,000 \$560
Constituction Barricade - Type III	_	LA	Sub Total	\$38,160
				,
E. Minor Items (5% of Roadway, Structure and Traffic Items)		5%		\$55,282
F. Lump Sum Items (Based on percentages of A-E)				
Cleaning & Grubbing		2%		\$24,019
Mobilization		6.5%		\$78,060
M&PT		2%		\$24,019
Construction Staking	~~-	1%		\$12,009
	CON	STRUC	TION TOTAL	\$1,339,032
			SAY	\$1,340,000
			SAY	31,340,000
G. Incidentals (25%) & Contingencies (20%)		45%		\$602,564
		•		


TOTAL ESTIMATED COST (Year 2017)


\$1,941,597

Say \$1,950,000

Appendix F

Bridge Alternative General-Plan, Elevation and CrossSection

Appendix I

Preliminary Structural Calculations

Date:	12/21/2016	Main Street Alt_4.lbs
Time:	5:25 PM	Bentley LEAP Bridge Steel [AASHTO LRFD Specifications]

Bridge 1

Superstructure

Member Definition

Member Group: Group01

Member 01:

Std Section	No.	Ref. Span	Start (ft)	Length (ft)	Material	Section		
	1	1	0.0000	69.7500	Grade 50	W30X132		

Member 02:

Std Section	No.	Ref. Span	Start (ft)	Length (ft)	Material	Section	
	1	1	0.0000	69.7500	Grade 50	W30X132	

Member 03:

Std Section	No.	Ref. Span	Start (ft)	Length (ft)	Material	Section		
	1	1	0.0000	69.7500	Grade 50	W30X132		

Member 04:

Std Section	No.	Ref. Span	Start (ft)	Length (ft)	Material	Section		
	1	1	0.0000	69.7500	Grade 50	W30X132		

Date:	12/21/2016	Main Street Alt_4.lbs	
Time:	5:26 PM	Bentley LEAP Bridge Steel [AASHTO LRFD Specifications]	v16.01.00.05

Code Checker Results

Group01

Member 01

POI Location: 34.875 ft (1.50) Mid Bracing Point:

Strength Limit State (Article 6.10.6)

Final Default Stren	gtii I	Strength I	Fina	<u>l</u>		
Article		Equation	Parameter	Value	Perf. Ratio	Result
6.10.6.2 – Flexure						
5.10.6.2.2 – Compo	site Sections in P	ositive Flexure				
		Is Compact?				Compac
		Straight Bridge?				Straight
	6.10.6.2.2	Flange $F_v \le 70 ksi$	Fyt	50.000	0.7143	Т
	0.10.0.2.2	7 tan 8e 7 y = 70x3t	Fyb	50.000	0.7143	True
	6.10.2.1.1-1	$\frac{D}{t_w} \le 150$	D	28.300	0.2060	TP.
	0.10.2.1.1-1	$t_w = 130$	tw	0.615	0.3068	True
	6.10.6.2.2-1	$\frac{2D_{cp}}{t_w} \le 3.76 \sqrt{\frac{E}{F_{yc}}}$	Dcp	0.000	0.0000	True
5.10.7.1 – Compact	Sections					
			Ми	2226.617		Passed
	6.10.7.1.1-1	$M + \frac{1}{1} \epsilon S < \delta M$	fl	14.607		
	0.10.7.1.1-1	$M_u + \frac{1}{3} f_l S_{st} \le \phi_f M_n$	Sxt	487.611	0.9025	
			Φf Mn	2686.352		
	6.10.7.1.2-1	$M_n = M_p$	Мр	2995.066		
		15	Mn	2686.352		
	6.10.7.1.2-2	$M_n = M_p \left(1.07 - \frac{0.7D_p}{D_p} \right)$	Мр	2995.066		
	0.10.7.1.2-2	$M_n - M_p \left(1.07 - \frac{1}{D_t} \right)$	Dp	9.779		
			Dt	39.550		
	6.10.7.1.2-3	$M_n \le 1.3 R_n M_y$	1.3RhMy	2641.226		P
	0.10.7.1.2-3	$M_n \leq 1.5 R_n M_y$	Му	203,1.712		
.10.7.3 – Ductility						
	6.10.7.3-1	$D_p \le 0.42D_t$	Dp	9.779	0.5005	D
	0.10.7.3-1	$D_p \simeq 0.42D_t$	0.42 Dt	16.611	0.5887	Passed

Date:	12/21/2016	Main Street Alt_4.lbs	
Time:	5:26 PM	Bentley LEAP Bridge Steel [AASHTO LRFD Specifications]	v16.01.00.05

			Vu	20.991	0.0416	
	6.10.9.1-1	$V_u \leq \phi_v V_n$				Passed
			ΦVn	504.730		
6.10.9.2 – Ur	nstiffened Webs					
		$d_0 \le 1.5D$	d0			
		$a_0 \equiv 1.5D$	D			
		d < 2 0 D	d0	167.400	1.050	11
		$d_0 \le 3.0D$	D	28.300	1.972	Unstiffene
	6.10.9.2-1	$V_n = V_{cr} = CV_p$	Vn	504.730	18	
	6.10.9.2-2	$V_p = 0.58 F_{yw} Dt_w$	Vp	504.730		
	6.10.9.3.2-4	C = 1.0	С	1.000		
	6.10.9.3.2-5	$C = \frac{1.12}{\frac{D}{t_w}} \sqrt{\frac{Ek}{F_{yw}}}$	C			
	6.10.9.3.2-6	$C = \frac{1.57}{\left(\frac{D}{t_w}\right)^2} \left(\frac{Ek}{F_{yw}}\right)$	C			15
		k = 5	k	5.000		

Service Limit State (Article 6.10.4)

Final Default Service	II Service II	<u>Final</u>			
Article	Equation	Parameter	Value	Perf. Ratio	Result
6.10.4.2 – Permanent	Deformations				
6.10.4.2.1 – General					
	Slab Effective Negative?				True
	Continuous Shear Connectors?				True
	$f_{slab} < 0.9 f_r$	fslab			
	$J_{slab} \sim 0.9 J_r$	0.9 fr			
	Is 6.10.1.7 met?				True
	$f_{slab} < 2f_r$	fslab			
	$J_{slab} \sim 2J_r$	2 fr			
6.10.1.6 – Lateral Fla	nge Stress Considerations				
	6.10.1.6-2 $L_b \le 1.2L_a \frac{C_b R_b}{C_b}$	Lb	167.400		
	6.10.1.6-2 $L_b \le 1.2L_p \sqrt{\frac{C_b R_b}{f_{bu} / F_{yc}}}$		133.983		

Date:	12/21/2016	Main Street Alt_4.lbs				
Time:	5:26 PM	Bentley LEAP Bridge Steel [AASHTO LRFD Specifications]	v16.01.00.05			

			Д1	9.001		Î			
	(10164	0.85	fl1	8.991					
A Common	6.10.1.6-4	6.10.1.6-4 $f_{I} = \left(\frac{0.85}{1 - \frac{f_{bu}}{F_{cr}}}\right) f_{I1} \ge f_{I1}$	fl	9.896					
	6.10.1.6-1	$f_I \le 0.6 F_{vf}$	Fyf	50.000	50.000	50.000	50.000	0.3299	
	0.10.1.0 1	$J_1 = 0.01 \text{ y}$	fl	9.896	0.3299				
6.10.4.2.2 – Flexur	e								
		Is Section Composite?				True			
		Is Flexure Negative?				False			
	6.10.4.2.2-1	$f_f \le 0.95 R_h F_{yf}$	ff	18.259	0.2014	ъ .			
	0.10.4.2.2-1		0.95Rh*Fyf	47.500	0.3844	Passed			
			ff	40.382					
	6.10.4.2.2-2	$f_f + \frac{f_l}{2} \le 0.95 R_h F_{yf}$	fl	9.896	0.9543	Passed			
			0.95Rh*Fyf	47.500					
			ff	18.259					
Top Flange	6.10.4.2.2-3	$f_f + \frac{f_l}{2} \le 0.80 R_h F_{yf}$	fl	0.000					
			0.8*Rh*Fyf						
			ff	40.382					
Bottom Flange	6.10.4.2.2-3	$f_f + \frac{f_l}{2} \le 0.80 R_h F_{yf}$	fl	9.896					
		2	0.8*Rh*Fyf						
	6.10.4.2.2-4	$f_c \le F_{cov}$	fc						
	0.10.4.2.2-4	$J_C = I_{CW}$	Fcrw						

Group01

Member 02

POI Location: 34.875 ft (1.50) Mid Bracing Point:

Strength Limit State (Article 6.10.6)

Final Default Streng	gth I	Strength I	<u>Final</u>			
Article		Equation	Parameter	Value	Perf. Ratio	Result
6.10.6.2 – Flexure						
6.10.6.2.2 – Compo	site Sections in P	ositive Flexure				
		Is Compact?				Compact
		Straight Bridge?				Straight
	6.10.6.2.2	Flange $F_v \le 70 ksi$	Fyt	50.000	0.7142	
	0.10.6.2.2	Tunger $y \le 70kSt$	Fyb	50.000	0.7143	True

Date:	12/21/2016	Main Street Alt_4.lbs				
Time:	5:26 PM	Bentley LEAP Bridge Steel [AASHTO LRFD Specifications]	v16.01.00.05			

	6.10.2.1.1-1	<u>D</u> < 150	D	28.300	0.000	
	0.10.2.1.1-1	$\frac{D}{t_w} \le 150$	tw	0.615	0.3068	True
	6.10.6.2.2-1	$\frac{2D_{cp}}{t_w} \le 3.76 \sqrt{\frac{E}{F_{yc}}}$	Dcp	0.000	0.0000	True
6.10.7.1 – Compac	t Sections					
			Ми	2224.763	1	
	6.10.7.1.1-1	M . 1 CG 1 M	fl	4.820		
	6.10.7.1.1-1	$M_u + \frac{1}{3} f_t S_{st} \le \phi_f M_n$	Sxt	494.210	0.8108	Passed
			Фf Mn	2825.401		
	6.10.7.1.2-1	$M_n = M_p$	Мр	3132.480		
			Mn	2825.401		
	(107122	$M = M \begin{pmatrix} 1.07 & 0.7D_p \end{pmatrix}$	Мр	3132.480		
	6.10.7.1.2-2	$M_n = M_p \left(1.07 - \frac{0.7D_p}{D_t} \right)$	Dp	9.494		
			Dt	39.550		
	(107122	M <1.20 M	1.3RhMy	2676.968		
	6.10.7.1.2-3	$M_n \le 1.3 R_n M_y$	Му	2059.206		
6.10.7.3 – Ductility						611-111-111-1
	6.10.7.3-1	D < 0.42D	Dp	9.494	0.55.5	
	0.10.7.3-1	$D_p \le 0.42D_t$	0.42 Dt	16.611	0.5715	Passed
6.10.6.3 – Shear						
6.10.9.1 – General						
	6.10.9.1-1	V	Vu	55.001		
	0.10.9.1-1	$V_u \leq \phi_v V_n$	ΦVn	504.730	0.1090	Passed
6.10.9.2 – Unstiffer	ned Webs					
		d <15D	d0			
		$d_0 \le 1.5D$	D			
		1 < 2 0 D	d0	167.400		
		$d_0 \le 3.0D$	- D	28.300	1.972	Unstiffened
	6.10.9.2-1	$V_n = V_{cr} = CV_p$	Vn	504.730		
	6.10.9.2-2	$V_p = 0.58 F_{yw} Dt_w$	Vp	504.730		
	6.10.9.3.2-4	C=1.0	C .	1.000		
	6.10.9.3.2-5	$C = \frac{1.12}{\frac{D}{t_{w}}} \sqrt{\frac{Ek}{F_{yw}}}$	С			

Date:	12/21/2016	Main Street Alt_4.lbs				
Time:	5:26 PM	Bentley LEAP Bridge Steel [AASHTO LRFD Specifications]	v16.01.00.05			

6.10.9.3.2-6	$C = \frac{1.57}{\left(\frac{D}{t_w}\right)^2} \left(\frac{Ek}{F_{yw}}\right)$	C		
	<i>k</i> = 5	k	5.000	

Service Limit State (Article 6.10.4)

Final Default Ser	vice ii			<u>Final</u>				
Article		Equation	Parameter	Value	Perf. Ratio	Result		
.10.4.2 – Permai	nent Deformations							
.10.4.2.1 – Gene	eral							
		Slab Effective Negative?				True		
		Continuous Shear Connectors?				True		
		f <0.0 f	fslab					
		$f_{slab} < 0.9 f_r$	0.9 fr					
		Is 6.10.1.7 met?				True		
		f 25	fslab					
		$f_{slab} < 2f_r$	2 fr					
.10.1.6 – Lateral	Flange Stress Consi	derations						
	6.10.1.6-2	$C_b R_b$	Lb	167.400				
	6.10.1.6-2	$L_b \le 1.2L_p \sqrt{\frac{C_b R_b}{f_{bu} / F_{yc}}}$		138.837	1			
			fl1	3.050				
	6.10.1.6-4	$f_{I} = \left(\frac{0.85}{1 - \frac{f_{bu}}{F_{cr}}}\right) f_{I1} \ge f_{I1}$	fl	3.291	1			
		$\left(\frac{1-\frac{J_{Du}}{F_{cr}}}{F_{cr}}\right)$						
	6.10.1.6-1	f < 0.6E	Fyf	50.000				
	6.10.1.6-1	$f_l \le 0.6 F_{yf}$	fl	3.291	0.1097			
10.4.2.2 – Flexu	ire							
		Is Section Composite?				True		
		Is Flexure Negative?				False		
	(10.1.2.2.1.)	£ < 0.05 D. E	ff	17.121	(2) (3)	9700		
	6.10.4.2.2-1	$f_f \le 0.95 R_h F_{yf}$	0.95Rh*Fyf	47.500	0.3604	Passed		
			ff	39.848				
	6.10.4.2.2-2	$f_f + \frac{f_l}{2} \le 0.95 R_h F_{yf}$	fl	3.291	0.8735	Passed		
		2	0.95Rh*Fyf	47.500				

Date:	Date: 12/21/2016 Main Street Alt_4.lbs					
Time:	5:26 PM	Bentley LEAP Bridge Steel [AASHTO LRFD Specifications]	v16.01.00.05			

		C	ff	17.121	
Top Flange	6.10.4.2.2-3	$f_f + \frac{f_l}{2} \le 0.80 R_h F_{yf}$	fl	0.000	
			0.8*Rh*Fyf		
		C	ff	39.848	
Bottom Flange	6.10.4.2.2-3	$f_f + \frac{f_l}{2} \le 0.80 R_h F_{yf}$	fl	3.291	
			0.8*Rh*Fyf		
	6.10.4.2.2-4	$f_c \le F_{crw}$	fc		words (V)
	0.1.01.112.12	J c — * crw	Fcrw		

Group01

Member 03

POI Location: 34.875 ft (1.50) Mid Bracing Point:

Strength Limit State (Article 6.10.6)

Final Default Stren	gth I	Strength I	Fina	<u>I</u>		
Article		Equation	Parameter	Value	Perf. Ratio	Result
6.10.6.2 – Flexure						
6.10.6.2.2 – Compo	osite Sections in P	ositive Flexure				
		Is Compact?		1		Compact
		Straight Bridge?				Straight
	6.10.6.2.2	Flange $F_v \le 70 ksi$	Fyt	50.000	0.7143	
	0.10.0.2.2	Transe $T_y \leq 70$ kst	Fyb	50.000		True
	6.10.2.1.1-1	$\frac{D}{< 150}$	D	28.300	0.3068	
	0.10.2.1.1-1	$\frac{D}{t_w} \le 150$	tw	0.615		True
	6.10.6.2.2-1	$\frac{2D_{cp}}{t_w} \le 3.76 \sqrt{\frac{E}{F_{yc}}}$	Dcp	0.000		True
6.10.7.1 – Compact	t Sections		-			
			Ми	2224.404		
	6.10.7.1.1-1	$M_u + \frac{1}{3} f_l S_{st} \le \phi_f M_n$	fl	4.734	0.0102	
	0.10.7.1.1-1	$M_u + \frac{1}{3}J_l S_{st} \leq \varphi_f M_n$	Sxt	494.210	0.8103	Passed
			Фf Mn	2825.401		
	6.10.7.1.2-1	$M_n = M_p$	Мр	3132.480		
		Ø G	Mn	2825.401		
	6.10.7.1.2-2	$M_n = M_p \left(1.07 - \frac{0.7D_p}{D_s} \right)$	Мр	3132.480		
	0.10.7.1.2-2	$M_{in} - M_{p} \left(1.07 - \frac{1}{D_{i}} \right)$	Dp	9.494		
	.00		Dt	39.550		

Date:	12/21/2016	Main Street Alt_4.lbs	
Time:	5:26 PM	Bentley LEAP Bridge Steel [AASHTO LRFD Specifications]	v16.01.00.05

	(107122	M <12D M	1.3RhMy	2676.968		I
	6.10.7.1.2-3	$M_n \le 1.3 R_n M_y$	My	2059.206		
6.10.7.3 – Duc	tility					
	6.10.7.3-1	$D_p \le 0.42D_t$	Dp	9.494	0.5715	D 1
	0.10.7.3-1	$D_p \subseteq 0.42D_t$	0.42 Dt	16.611	0.5715	Passed
6.10.6.3 – Shea	ar					
6.10.9.1 – Gen	eral					
	6.10.9.1-1	$V_u \leq \phi_v V_n$	Vu	53.920	0.1060	D 1
	0.10.9.1-1	$v_u \leq \varphi_v v_n$	ΦVn	504.730	0.1068	Passed
6.10.9.2 – Unst	tiffened Webs					
		$d_0 \le 1.5D$	d0			
		$a_0 \le 1.5D$	D		3	
		$d_0 \le 3.0D$	d0	167.400	1.072	11 .100
		$u_0 \le 5.0D$	D	28.300	1.972	Unstiffene
	6.10.9.2-1	$V_n = V_{cr} = CV_p$	Vn	504.730		
	6.10.9.2-2	$V_p = 0.58 F_{yw} Dt_w$	Vp	504.730		
	6.10.9.3.2-4	C = 1.0	C	1.000		
	6.10.9.3.2-5	$C = \frac{1.12}{\frac{D}{t_w}} \sqrt{\frac{Ek}{F_{yw}}}$	C			2
	6.10.9.3.2-6	$C = \frac{1.57}{\left(\frac{D}{t_w}\right)^2} \left(\frac{Ek}{F_{yw}}\right)$	С			
		k = 5	k	5.000		

Service Limit State (Article 6.10.4)

<u>Final</u>

Service II

Final Default Service II

Article	Equation	Parameter	Value	Perf. Ratio	Result
6.10.4.2 – Permanent Def	Cormations				
6.10.4.2.1 – General					
	Slab Effective Negative?				True
	Continuous Shear Connectors?				True
	f < 0.0 f	fslab			
	$f_{slab} < 0.9 f_r$	0.9 fr			

Is 6.10.1.7 met?

Date:	12/21/2016	Main Street Alt_4.lbs	
Time:	5:26 PM	Bentley LEAP Bridge Steel [AASHTO LRFD Specifications]	v16.01.00.05

			falah		Ī	Ĺ
		$f_{slab} < 2f_r$	fslab			
6 10 1 6 1 - 4 1	F1 St C		2 fr			
6.10.1.6 – Lateral	Flange Stress Cons					
	6.10.1.6-2	$L_b \le 1.2 L_p \sqrt{\frac{C_b R_b}{f_{bu} / F_{vc}}}$	Lb	167.400		
		$V f_{bu} / F_{yc}$		138.838		
		0.95	fl I	2.995		
	6.10.1.6-4	$f_{I} = \left(\frac{0.85}{1 - \frac{f_{bu}}{F_{cr}}}\right) f_{I1} \ge f_{I1}$	fl	3.231		
	6.10.1.6-1	$f_l \le 0.6 F_{vf}$	Fyf	50.000	0.1077	
	0.10.1.0-1	$J_1 = 0.01 \text{ yf}$	fl	3.231	0.1077	
6.10.4.2.2 – Flexui	re					
		Is Section Composite?				True
		Is Flexure Negative?				False
	6.10.4.2.2-1	$f_f \le 0.95 R_h F_{vf}$	ff	17.120	0.3604	ъ.
	0.10.4.2.2-1	$ff = 0.55 R_h r_{yf}$	0.95Rh*Fyf	47.500	0.3604	Passed
		C	ff	39.842		
	6.10.4.2.2-2	$f_f + \frac{f_l}{2} \le 0.95 R_h F_{yf}$	fl	3.231	0.8728	Passed
			0.95Rh*Fyf	47.500		
			ff	17.120		
Top Flange	6.10.4.2.2-3	$f_f + \frac{f_l}{2} \le 0.80 R_h F_{yf}$	fl	0.000		
		2	0.8*Rh*Fyf			
		3	ff	39.842		
Bottom Flange	6.10.4.2.2-3	$f_f + \frac{f_l}{2} \le 0.80 R_h F_{yf}$	fl	3.231		
		Z	0.8*Rh*Fyf			
	6.10.4.2.2-4	f < F	fc			
	0.10.4.2.2-4	$f_c \le F_{crw}$	Fcrw			

Group01

Member 04

POI Location: 34.875 ft (1.50) Mid Bracing Point;

Strength Limit State (Article 6.10.6)

Final Default Strength I	Strength I	<u>Final</u>			
Article	Equation	Parameter	Value	Perf. Ratio	Result
6.10.6.2 – Flexure					
6.10.6.2.2 – Composite Section	ons in Positive Flexure				

Date:	12/21/2016	Main Street Alt_4.lbs	
Time:	5:26 PM	Bentley LEAP Bridge Steel [AASHTO LRFD Specifications]	v16.01.00.05

		Is Compact?				Compact
		Straight Bridge?				Straight
	6.10.6.2.2	Flange $F_v \le 70 ksi$	Fyt	50.000	0.7142	Т
	0.10.0.2.2	$TungeT_y \subseteq Tokst$	Fyb	50.000	0.7143	True
	6.10.2.1.1-1	$\frac{D}{t_w} \le 150$	D	28.300	0.2068	т
	0.10.2.1.1-1	$t_w = 130$	tw	0.615	0.3068	True
	6.10.6.2.2-1	$\frac{2D_{cp}}{t_w} \le 3.76 \sqrt{\frac{E}{F_{yc}}}$	Dcp	0.000	0.0000	True
6.10.7.1 – Con	npact Sections					
			Mu	2227.247		
	6107111	$M_u + \frac{1}{3} f_t S_{st} \le \phi_f M_n$	fl	14.630	0.9029	
	0.10.7.1.1-1	$M_u + \frac{1}{3} J_l S_{st} \le \varphi_f M_n$	Sxt	487.611		Passed
			Фf Mn	2686.352		
	6.10.7.1.2-1	$M_n = M_p$	Мр	2995.066	2000	
			Mn	2686.352		
	6107122	$M_n = M_p \left(1.07 - \frac{0.7D_p}{D_c} \right)$	Мр	2995.066		
	0.10.7.1.2-2	$M_n - M_p \left(1.07 - \frac{D_t}{D_t}\right)$	Dp	9.779		
			Dt	39.550		
	6.10.7.1.2-3	$M_n \leq 1.3 R_n M_y$	1.3RhMy	2641.226		
	0.10.7.1.2 3	n = n + n + n + y	Му	2031.712		
6.10.7.3 – Duct	tility					
	6.10.7.3-1	$D_p \le 0.42D_t$	Dp	9.779	0.5887	Passed
	01.017.5	- p	0.42 Dt	16.611	0.3667	rasseu
6.10.6.3 – Shea						
6.10.9.1 – Gene	eral					
	6.10.9.1-1	$V_u \leq \phi_v V_n$	Vu	21.079	0.0418	Passed
			ΦVn	504.730		1 40004
6.10.9.2 – Unst	iffened Webs					_
		$d_0 \le 1.5D$	d0			
			D			
		$d_0 \le 3.0D$	d0	167.400	1.972	Unstiffene
			D	28.300		
	6.10.9.2-1	$V_n = V_{cr} = CV_p$	Vn	504.730		
	6.10.9.2-2	$V_p = 0.58 F_{yw} Dt_w$	Vp	504.730	0	
	6.10.9.3.2-4	C = 1.0	C	1.000		

Date:	12/21/2016	Main Street Alt_4.lbs	
Time:	5:26 PM	Bentley LEAP Bridge Steel [AASHTO LRFD Specifications]	v16.01.00.05

6.10.9.3.2-5	$C = \frac{1.12}{\frac{D}{t_w}} \sqrt{\frac{Ek}{F_{yw}}}$	C			
6.10.9.3.2-6	$C = \frac{1.57}{\left(\frac{D}{t_w}\right)^2} \left(\frac{Ek}{F_{yw}}\right)$	С		is a	
	<i>k</i> = 5	k	5.000		

Service Limit State (Article 6.10.4)

Final Default Service	e II	Service II	<u>Final</u>			
Article		Equation	Parameter	Value	Perf. Ratio	Result
5.10.4.2 – Permanen	t Deformations					
6.10.4.2.1 – General						
		Slab Effective Negative?				True
		Continuous Shear Connectors?				True
		f <00f	fslab			
		$f_{slab} < 0.9 f_r$	0.9 fr			
		Is 6.10.1.7 met?				True
		f <2.f	fslab			
		$f_{slab} < 2f_r$	2 fr			
.10.1.6 – Lateral Fla	ange Stress Consi	derations				
	6.10.1.6-2	$L_b \le 1.2 L_p \sqrt{\frac{C_b R_b}{f_{bu} / F_{vc}}}$	Lb	167.400		
	0.10.1.0-2	$\sum_{b=1.2L_p} \sqrt{f_{bu}/F_{yc}}$		133.980		
		(0.05	fl1	9.005		
	6.10.1.6-4	$f_{l} = \left(\frac{0.85}{1 - \frac{f_{lu}}{F_{cr}}}\right) f_{l1} \ge f_{l1}$	fl	9.912	8	
	6 10 1 6 1	f < 0.6E	Fyf	50.000		9
	6.10.1.6-1	$f_l \le 0.6 F_{yf}$	fl	9.912	0.3304	
.10.4.2.2 – Flexure						
1		Is Section Composite?				True
		Is Flexure Negative?				False
	0.10.4.2.2-1	f < 0.05P F	ff	18.260	0.2044	
0	.10.4.2.2-1	$f_f \le 0.95 R_h F_{yf}$	0.95Rh*Fyf	47.500	0.3844	Passed

Date:	12/21/2016	Main Street Alt_4.lbs				
Time:	5:26 PM	Bentley LEAP Bridge Steel [AASHTO LRFD Specifications]	v16.01.00.05			

			ff	40.392		
	6.10.4.2.2-2	$f_f + \frac{f_l}{2} \le 0.95 R_h F_{yf}$	fl	9.912	0.9547	Passed
			0.95Rh*Fyf	47.500		
			ff	18.260		
Top Flange	6.10.4.2.2-3	$f_f + \frac{f_l}{2} \le 0.80 R_h F_{yf}$	fl	0.000		
			0.8*Rh*Fyf			
			ff	40.392		
Bottom Flange	6.10.4.2.2-3	$f_f + \frac{f_l}{2} \le 0.80 R_h F_{yf}$	fl	9.912		
			0.8*Rh*Fyf			**
	6.10.4.2.2-4	$f_c \le F_{crw}$	fc			
			Fcrw			